If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+9x-1=0
a = 4; b = 9; c = -1;
Δ = b2-4ac
Δ = 92-4·4·(-1)
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{97}}{2*4}=\frac{-9-\sqrt{97}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{97}}{2*4}=\frac{-9+\sqrt{97}}{8} $
| s-5/9=19 | | -6-7n+4n=1+2n-6n | | 8b=-65 | | (3+5)14=x | | 14.5=m-12.35 | | 3=11+t | | 14j-8j+12=30 | | 3+5(14)=x | | (5x+8)+12=90 | | (6x+1)(6x-1)=x | | 3m–1=89–6m | | 3. 3m–1=89–6m | | 37q+(-13q)-(-q)+24q-22q+(-13)=41 | | 3(x+2)=21(20-3)=11 | | 64.32x+2.00=63.82+2.05x | | 2(v+2)=18 | | 5(x+2)+10=80 | | -5y+2(y+6)=21 | | |7x+2|+7=13 | | 4(a+3)-2(a+6)=18 | | 41/2+x=15 | | 3u+4(u-6)=-10 | | 3g+(-4g)+16g-11g=(-12) | | 64.32+2.00x=63.82+2.05x | | -x^2-15*x=0 | | 2x*2x=210 | | 5^2x-4=36 | | X+5-y=11 | | 6(5+x)=26+6x | | 8(2w+6)/3=-9 | | 64.32+2.00x=63.82x+2.05 | | m-57=124 |